Australian Journal of Crop Science

AJCS 4(3):196-208 (2010)

Abiotic stress responsive proteins of wheat grain determined using proteomics technique

Abu Hena Mostafa Kamal¹, Ki-Hyun Kim¹, Kwang-Hyun Shin¹, Jong-Soon Choi², Byung-Kee Baik³, Hisashi Tsujimoto⁴, Hwa Young Heo⁵, Chul–Soo Park⁶, Sun–Hee Woo^{1*}

¹Dept. of Crop Science, Chungbuk National University, Cheong-ju, 361-763, Korea
²Proteome Research Team, Korea Basic Science Institute, Daejeon 305-333, Korea
³Dept. of Crop Soil and Sciences, Washington State University, Pullman, WA 99164-6420, USA
⁴Laboratory of Plant Genetics and Breeding Science, Tottori University, Tottori 680-8553, Japan
⁵ Breeding Resource Developments, National Institute of Crop Science, Suwon, 441-857, Korea
⁶ Winter Crop & Upland Crop, National Institute of Crop Science, Iksan 570-080, Korea

*Corresponding author: shwoo@chungbuk.ac.kr

Abstract

The analysis of stress-responsiveness in plants is an important route to the discovery of genes conferring stress tolerance. Evaluation of two-dimensional electrophoresis gels revealed many proteins to be differentially expressed as a result of abiotic stress among cultivars. More than 140 protein spots were detected by 2-DE, and some selected protein spots analyzed by MALDI-TOF mass spectrometry. 22.58 % of abiotic stress responsive proteins were identified in cv. China-108, 32.25 % in cv. Yeonnon-78, 70.96 % in cv. Norin-61 and 69.35 % in cv. Kantou-107. Of the total identified proteins, 124 proteins were recognized as abiotic stress responsive unique proteins, of which 31.56 % are induced by heat, 26.61 % by drought, 23.38 % by salt, 21.77 % by cold and 22.58 % by other environmental stress. Furthermore, elucidating the function of proteins expressed by genes in stress tolerant and susceptible plants will not only advance our understanding of plant adaptation but also tolerance to environmental stresses. Genes that have been identified by proteomics can be used for marker-assisted breeding or gene transformation programs to improve the architecture of crop plants and resistance or tolerance to abiotic stresses.

Key words: Abiotic stress; Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF); Proteomics; Two-dimensional electrophoresis (2-DE); Wheat grain

Introduction

Any living organism has to survive conditions. Specifically for plants, the possibilities to escape from stress are limited because plants are motionless (Kuiper, 1998). As a general rule, emblematic response to environmental stress conditions is established by the induction of a set of stress proteins that protects the organism from cellular damage. Abiotic stresses such as heat, cold, drought, salinity, nutrient deficiency, ozone, heavy metals, UV-B radiation, visible light, chemical toxicity and oxidative stress are serious intimidation to agriculture. Abiotic stresses usually cause protein dysfunction. The yield and quality of cereals are severely affected by heat stress in many countries (Treglia et al., 1999). Heat stress affects the grain yield and quality of wheat through affecting sink strength and source capacity. Wheat genotypes express a differential response to chronic heat as well as a heat shock (Yang et al., 2002). Drought and soil salinity significantly affect plant growth, development and productivity, thus posing a severe threat to agriculture throughout the world. It is projected that up to 50% of agricultural yield will be lost due environmental stresses such as heat, cold, drought, salinity, nutrient, heavy metals and so on, compared to about 10 to 20% crop loss caused by biotic stress such as pathogens and diseases (Kreps et al., 2002). Water is the

most wide-ranging difficulty among abiotic stresses for production of wheat in the world environment. Strategy is to obtain plants with higher performance under water stress conditions by identifying and modifying the molecular mechanisms that take place when the water availability becomes limiting. Drought and heat are the two major abiotic constraints affecting the yield and quality of wheat. Plants, as sessile organisms, rely on proteomic plasticity to remodel themselves during periods of developmental change, to endure varying environmental conditions, and to respond to biotic and abiotic stresses. To investigate these facts, more comprehensive approaches that include quantitative and qualitative analyses of gene expression products are necessary at the transcriptome, proteome, and metabolome levels. Environmental stresses that result in cellular dehydration, such as freezing, salt and water stress, often lead to similar changes in plant gene expression and metabolism (Cook et al., 2004; Kreps et al., 2002). The proteome is not a static entity, being it affected by multiple modifications such as cell cycle, changes of external conditions, kind of tissue examined, and fastidious physiological states. Proteomics is becoming a powerful tool to analyze biochemical pathways and the complex response of plants to environmental stimuli. In

particular, comparative proteomic investigations of plants before and after specific or interactive stresses allow us to obtain information on how defensive mechanisms are adopted from plants. Proteomics also makes an essential bridge between the transcriptome and metabolome (Wang et al., 2004; Gray and Heath, 2005), complementing genomics research. Only by grouping all this information together is it possible to achieve a comprehensive and exhaustive analysis of the mechanism of plant defense against abiotic and biotic stress. Upon several stress responses protein, protein-protein interaction and posttranslation modification have been also identified (Salekdeh et al., 2002). In the last decade, methodological improvements have allowed comparative proteomic investigations of plants under stress which have allowed us to analyses biochemical pathways and the complex response of plants to environmental stimuli (Qureshi et al., 2007). In this study, we determined specific proteins induced by each abiotic stress, particular emphasis will be placed on the heat shock, drought, cold, salt and others environmental stress by proteomic approaches.

Materials and methods

Plant Materials

Wheat grain of four cultivars (two Chinese cvs. China-108, Yennon-78 and two Japanese cvs. Norin-61, Kantou-107) were used in this study for identification of abiotic stress responsive proteins by proteomic analysis. Wheat were grown in field at the National Institute of Crop Science, Suwon, Korea. Wheat were grown in field under low temperature ($-20^{\circ} \sim -10^{\circ}$ C) for four months, then slowly increase temperature and naturally exposed up to 28° C until harvesting. The harvested grains were stored at -20° C until used.

Sample preparation by KCl solubility method

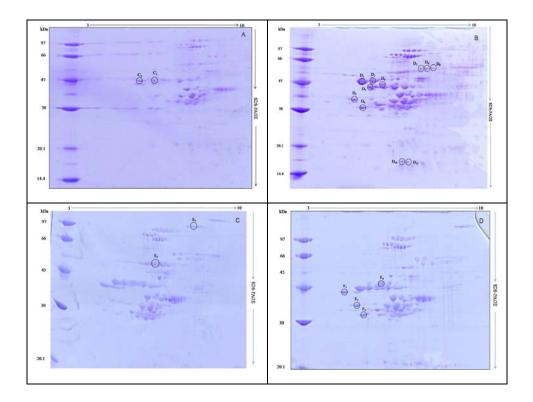
Osborne's (1924) solubility method was used to fractionate wheat endosperm with some modifications (Hurkman and Tanaka, 2007; Kamal et al., 2009). Wheat flour (50 mg) was suspended in 200 µl of cold (4 °C) KCl buffer (50 mM Tris-HCl, 100 mM KCl, 5 mM ethylenediaminetetraacetic acid (EDTA) (pH 7.8). The suspension was incubated on ice for 5 min with intermittent mixing by vortex including sonication (Sonics and Materials Inc., USA) and centrifuged at $16,000 \times g$ for 15 min at 4 °C (Hanil Science Industrial Co. Ltd. Korea). The pellet was suspended in 800 µl of SDS buffer (2% SDS, 10% glycerol, 50 mM DL-dithiothreitol (DTT), 40 mM Tris-Cl, pH 6.8), incubated for 1 hr at room temperature, and insoluble material removed by centrifugation at $16,000 \times g$ for 10 min at room temperature. The proteins were precipitated by the addition of 4 vol. of cold (-20 °C) acetone and incubation overnight at -20 °C. Following centrifugation, the pellet was rinsed with cold acetone, then dried by vacuum centrifugation (BIOTRON Inc., Korea) and solublized in urea buffer (9 M urea, 4% Triton X-114, 1% DTT, and 2% ampholytes) at 250 µl.

Gel electrophoresis

Soluble proteins of whole seed were examined by twodimensional gel electrophoresis according to the protocol of O'Farrell (1975). Sample solutions (200 µg proteins) were loaded on to the acidic side of the IEF (Iso-electric focusing) gel with pH range of 3-10 for the first dimension. SDS-PAGE in the second dimension (Nihon Eido, Tokyo, Japan) was performed with 12% separation and 5% stacking gels. Protein spots in 2-DE gels were visualized by Coomassie Brilliant Blue (CBB) R-250 staining (Woo *et al.*, 2002). Each sample was run three times and the best visualized gels were selected.

In-gel Digestion and Mass Spectrometry Analysis

Selected protein spots were excised from preparative loaded gels, and then washed with 100 µl distilled water. Each gel piece was dehydrated by 25 mM ammonium bicarbonate (ABC) / 50% acetonitrile (ACN) and washed with 10 mM DTT /0.1 M ABC. Gel pieces were dried under vacuum centrifugation, rehydrated with 55 mM iodoacetamide (IAA) / 0.1 M ABC for 30 min in dark. After removing the solution, the gels pieces were vortexed with 100 mM ammonium bicarbonate for 5 min and soaked in ACN for dehydration. The gel pieces were then dried under vacuum centrifugation. Trypsin solution (4µl) was added in rehydrated gel particles and incubated for 45 min at 4° C and overlaid with 30 µL of 25 mM ABC (pH 8.0) to keep them immersed. The gel pieces were then incubated overnight at 37°C. After incubation, the solution was spin down and transferred to a 500 µl siliconized tube. The gel particles were suspended in 40 μ l ACN / DDW / TFA (660 μ l:330 μ l:10 μ l) three times and 100% ACN, then vortexed for 30 min, respectively. The supernatant was dried under vacuum centrifugation for 2 hr. The digests were desalted with C18 Zip Tip (Millipore, Boston) and subjected to the analysis by MALDI-TOF Mass spectrometry.


Bioinformatics Analysis

According to Kamal et al. (2009), by using peptide fragmentation methods, the proteins were identified by searching NCBI non-redundant database using the MASCOT program (http://www.matrixscience.com). The search parameters allowed for modifications of acetyl (K), carbamidomethyl (C), oxidation (M), propionamide (C) with peptide tolerance (±100 ppm). For MS/MS searches, the fragmentation of a selected peptide molecular ion peak is used to identify with a probability of less than 5%. When more than one peptide sequence was assigned to a spectrum with significant score, the spectra were manually examined. Sequence length, gene name and also protein functions (categorized such as heat, drought, salt, cold and other environmental stress) were identified by searching Swiss-Prot / TrEMBL database using UniProtKB (http://www.uniprot.org).

Results and Discussion

2D-PAGE based protein comparison among four wheat cultivars

We identified more than 140 protein spots among four cultivars using the gels of pH 3-10. There were analyzed by MALDI-TOF/MS about 38 protein spots in China-108, 40 in Yeonnon-78, 26 in Norin-61 and 36 in Kantou-107. The protein spots patterns were highly reproducible for at least three self-determining protein extractions. Using 2-DE gels of pH 3-10, we observed qualitative variations of 19 protein spots in four wheat cultivars.

Fig 1. (A-D) 2D gel analyses of proteins extracted from mature wheat seeds (A; China-108, B; Yeonnon-78, C; Norin-61, D; Kantou-107). First dimension was performed on IEF with pH 3-10. In the second dimension gels were used and proteins were visualized using Coomassie Brilliant Blue (R-250). Circle shows that dissimilar protein spots among wheat cultivars

Among them, the protein spots C_{1-2} were only found in China-108 (Fig. 1A), D_{1-11} in Yeonnon-67 (Fig. 1B), E_{1-2} in Norin-61(Fig. 1C) and F_{1-4} in Kantou-107 (Fig. 1D). These results strongly indicate that these identified proteins are cultivar specific and show the difference among these cultivars (Yahata *et al.*, 2005; Kamal *et al.*, 2009).

Abiotic stress responsive proteins identified by mass spectrometry

Heat stress responsive proteins

Out of 39 heat stress responsive proteins, 8 proteins were identified in China- 108, 18 in Yeonnon-78, 31 in Norin-61, 27 in Kantou-107 (Fig 2). We observed heat increases or decreases in proteins by heat stress using proteomic technique in wheat grain. These proteins include heat shock proteins, heat stress transcription factor, granule bound starch synthesis, GTP binding proteins, betaamylase, eucaryotic initiation factor, elongation factor, ribulose biphosphate related proteins and so on (Supplementary table I). These results confirmed the results previously by Majoul et al. (2004), demonstrating that the synthesis of HSPs occurs in the full range of wheat tissues including developing grains (Giornini and Galili, 1991) and mature grain (Blumenthal et al., 1990), and heat stress transcription factor to be up regulated by heat(Qin et al., 2007). We also found some granule bound starch synthesis, as reported Mojoul et al. (2004).

The adverse effect of temperature on starch synthesis is responsible for the reduction in grain weight and hence for the decreased in yield (Wallwork et al., 1998). We also identified GTP-binding proteins, which are involved in signal transduction mechanism in plant systems, and these proteins regulate a flow of kinases that play a vital role in environmental stress signal transduction, and also high temperature seem to up-regulate the synthesis of GTP-binding proteins resulting in increased kinase activity(Grover et al., 2003). Vacuolar ATP synthesis proteins are induced by heat (Golldack and Dietz, 2001). Some others identified proteins were the ribulose biphosphate, elongation factors and eucaryotic translation initiation factors. Ribulose biphosphate (Rubisco) is the enzyme that converts CO2 to plant biomass. Rubisco electrovated temaperature inhibits photosynthetic CO₂ fixation in plant species. The temperature-induced decreased in the activation of Rubisco due to this inhibition resulting increased the temperature in chloroplast (Kobza and Edwards, 1987). Besides, translational activity was involved in the stress response. Some heat up regulated proteins showed the similarities to elongation factors (EF) and eucaryotic translation initiation factors (eIFs). Heat shock involves changes in the expression patterns of the eIFs, the EF 1-beta, EF 1alpha, EF Tu and eIF (4A, 4B, 4E, 4E-1, 4E-2, 5A-1, 5A-2, SUII), as were investigated in wheat leaves as a heat shock (Gallie et al., 1998). Nevertheless, we identified chaperone, ferritin, annexin, calcium-binding proteins, thioredoxin and ascorbate peroxidase and tubulin in four wheat cultivars (Supplementary Table I). Heat shock proteins (HSPs) function as molecular chaperones in maintaining homeostasis of protein folding and are related to the acquisition of thermotolerance (Wang et al., 2004) and ferritin encoding heat regulated (Qin et al., 2008). Calcium is a universal molecule in both animals and plants, and the transient increase in Ca^{2+} level during heat stress is well documented in plant. Heat shock triggers cytosolic Ca²⁺ bursts, which is transducted by Ca2+ bindig proteins(CBP) such as calmodin (CaM), calcineurin (CBL), annexin and then up regulates the expression of HSPs (Liu et al., 2003). Thioredoxin and ascorbate peroxidase increase more during short-term heat shock than during long-term heat treatments (Qin et al., 2008). Tubulin proteins are coupled to GTP binding proteins, which play a role in heat resistance in plant (Segal and Feldman, 1996). We are also identified serine carboxypeptidase, glucose-1-phosphate, glucose-6phosphate and S-adenosyl-methionone synthetase proteins (Supplementary table I).

Drought stress responsive proteins

In response to water deficit, plants have developed various strategies to cope with stress conditions through a combination of metabolic, physiological and morphological changes. These drought adaptive changes rely largely on alterations in gene expression. Out of 33 drought stress responsive, 9 proteins were identified in China-108, 15 in Yeonnon-78, 20 in Norin-61, 26 in Kantou-107 (Fig. 2). We identified different abscisic acid responsive proteins, LEA protein such as chaperonin, cys peroxiredoxin, ethylene response, and elongation factor TU in four wheat cultivars, which is responsible for drought stress (Supplementary Table I). We also observed cyclin-dependent kinase like, zinc finger, transcription factor like MYB, lipid transfer proteins and WRKY in this study (Supplementary table I). Water stress quickly reduced the mitotic activity of mesophyll cells in the meristematic zone and reduced the zone of cell division; the early decline in the Cdc2-like kinase activity indicates that the activation of the enzyme was directly affected by stress (Schuppler et al., 1998). AtMYB2 and AtMYC2 (rd22BP1) are MYBand bHLHrelated transcription factors that bind to MYBRS and MYCRS, respectively (Abe et al., 2003). All these transcription factors function as transcriptional activators in the expression of stressinducible genes. Although understanding of the down-regulation of gene expression under stress conditions is also important for understanding molecular responses to abiotic stresses, little is known about cis- and trans-acting factors involved in repression of stress-down-regulated genes. Zinc finger or zinc finger motif was highly enhanced under drought, cold and salinity stress in Arabidopsis (Sakamoto et al., 2004). Two genes (TaLTP1 and TaLTP2) encoding lipid transfer proteins (LTPs) were isolated from wheat-rye near-isogenic line (NIL). High levels of expression of TaLTPs in the tissue layers between the vascular bundles might play a role in the drought tolerance response of the wheat crown (Jang et al., 2002). WRKY transcriptional proteins are implicated in responses to the abiotic stresses of wounding (Cheong et al., 2002), the combination of drought and heat (Rizhsky et al., 2002), and cold (Huang and Duman, 2002). We also detected triticin in four wheat cultivars (Supplementary table I). The complement triticin of globulin storage proteins is very complex and

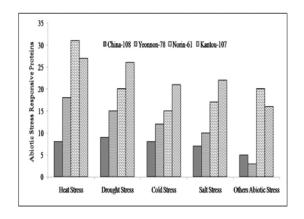


Fig 2. Functional distribution of the total identified abiotic stress responsive proteins among four wheat cultivars

warrants further analysis, particularly since some of these proteins increase in response to high temperature (Dupont *et al.*, 2006).

Cold stress responsive proteins

Out of 27 cold stress responsive proteins, 8 proteins were identified in China-108, 12 in Yeonnon-78, 15 in Norin-61, 21 in Kantou-107 (Fig. 2). We revealed some cold stress related proteins such as cold shock proteins, ABA inducible proteins, cyclophilin, low temperature regulated proteins, mitogen activated, and translation initiation in four wheat cultivars (Supplementary table I). Several cold-responsive genes of unknown function were identified from cold-acclimated wheat (Breton et al., 2003). WCSP1 (cold shock protein 1) induction was cold-specific because neither drought and salinity, nor heat stress induced WCSP1 expression (Karlson et al., 2002). Some major protein as cold shock protein, ABA inducible proteins and so on, synthesized in vivo and in vitro during cold acclimation (Houde et al., 1992). Protein synthesis is necessary for the development of freezing tolerance, and several distinct proteins accumulate during acclimation to cold, as a result of change in gene expression (Guy, 1999). ABA appears to have an important role in inducing freezing tolerance in wheat, which is influenced by water shortage, increasing their freezing tolerance (Xu et al., 2006). Cyclophilin, aquaporin, chitinase plays important role in cold (up regulated) stress of wheat (Houde et al., 2006). The effects of dehydration, cold-temperature treatment, and osmotic and salt stress on the expression of an abscisic acid-responsive protein kinase mRNA (PKABA1) was determined in wheat seedlings (Holappa and Simmons, 1995). Mitogen have three protein kinases, MAPKKK, MAPK and a ribosomal kinase homologue, increased markedly and simultaneously when plants were treated with low temperature (Zhang et al., 2006). The progressive increase in AP1 transcription was consistent with the progressive effect of vernalization on flowering time (Yan et al., 2003). Initiation Factor 1 levels increased two to threefold upon cold shock , and some mutations in the infA gene coding for IF1 result in cold sensitivity, further strengthening the possible role of S1 domain proteins in cold acclimation (Giuliodori et al., 2004).

Salt stress responsive proteins

Out of 29 salt stress responsive proteins, 7 proteins were identified in China-108, 10 in Yeonnon-78, 17 in Norin-61, 22 in Kantou-107 (Fig. 2). We identified some salt stress responsive proteins such as salt stress protein, ABA inducible, aquaporin, bowman-brik type proteinase inhibitor, calcineurin B like protein, cyclophilin, potassium channel, and RNA binding proteins in four wheat cultivars (Supplementary table I). Dooki et al. (2006) identified several salt responsive proteins including salt stress protein and ABA using 2-DE. Aquaporins-like proteins transport water across cellular membranes and play vital roles in all organisms under salt stress (Forrest and Bhave, 2008). Peroxiredoxin (2-Cys) used as antioxidant enzyme in roots and shoots of salt stressed seedling (Uniprot). This peptide encoded by WRS15 (myb-transcription factor) contains a Bowman-Birk domain sharing a high level of sequence, the expressin level of WRS15 was increased in SR3 wheat roots exposed to salt stress (Shan *et al.*, 2008). Calcineurin is a Ca^{2+} and calmodulin-dependent serine/threonine phosphatase, and notably, the expression of the mouse calcineurin gene in rice resulted in its higher salt stress tolerance than the non-transgenic rice (Ma et al., 2005). Cyclophilins is up-regulated under salt stress (Godoy et al., 2000). The physiological role of their homologues with putative zinc finger motif remains unclear. Zinc finger proteins play important role in growth and development in plants, and were characterized as salt stressed proteins in Arabidopsis (Xu et al., 2006). NaCl is the most plentiful salt encountered by plants under salinity stress, both Ca²⁺ and K²⁺ affect intracellular Na⁺ concentrations (Zhong and Lauchli, 1994), finally calcium enhances K⁺/Na⁺ selectivity and increases salt tolerance (Liu and Zhu, 1997). RNA binding proteins have probably functioned in salt stress (Sha Valli Khan et al., 2007).

Other stress responsive proteins

Out of 28 others abiotic stress responsive proteins, 5 proteins were identified in China-108, 3 in Yeonnon-78, 20 in Norin-61, 16 in Kantou-107 (Fig. 2). We identified heavy metals such as cadmium, copper, aluminium, manganese, metallothion like, molybdenum Rac/Ras like GTP binding, germin like, wall associated kinase, and some unclear abiotic stress responsive proteins in our experiments (Supplementary table I). Metallothioneinlike protein, putative wall-associated protein kinase, and the putative small GTP-binding protein Rab2, were upregulated by Cu stress (Zhang et al., 2009). The level of the molybdenum cofactor (MoCo) increased by the source and concentration of nitrogen was studied in annual ryegrass resulting facing this plant in salt stress (Sagi et al., 1997). Rac like GTP binding protein plays an important role for GTPase in oxidative stress response (Baxter- Burrell et al., 2002). GLPs (glucagon-like peptide) function primarily as superoxide dismutase (SOD) to protect plants from the effects of oxidative stress (Khuri et al., 2001). Aluminium-activated malate transporters play an important role in plant Al tolerance (Liu et al., 2009). In plants, the role of SOD has received much attention, since reactive oxygen species have been found to be produced during many adverse conditions such as drought, salinity, chilling stress (Martinez et al., 2001).

In conclusion, using two-dimensional electrophoresis, this study identified proteins involved in heat, drought, cold, salt and some others abiotic stress responses in wheat. Our findings reveal a proteomic profile of abiotic stress in wheat, which may provide benefits in two major areas, in the better understanding of abiotic stress proteins including their functions, and the understanding of stress related physiology in wheat grain.

Acknowledgements

This work was supported by a grant from the BioGreen 21 Program (20070301034043), Rural Development Administration, Korea (Republic of).

References

- Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 15:63–78
- Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002) RopGAP4-dependent Rop GTPase rheostat control of *Arabidopsis* oxygen deprivation tolerance. Science. 296: 2026-2028
- Blumenthal CS, Barlow EWR, Wrigley CW (1993) Growth environment and wheat quality: the effect of heat stress on dough properties and gluten proteins. Cereal Sci. 18:3–21
- Breton G, Danyluk J, Charron JB, Sarhan F (2003) Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and *Arabidopsis*. Plant Physiol. 132:64-74
- Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in *Arabidopsis*. Plant Physiol. 129: 661-677
- Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of *Arabidopsis*. Proc Natl Acad Sci USA. 101:15243-15248
- Dooki AD, Mayer-Posner FJ, Askari H, Zaiee AA, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics. 6: 6498–6507
- DuPont FM, Hurkman WJ, Vensel WH, Chan R, Lopez R, Tanaka CK, Altenbach SB (2006) Differential accumulation of sulfur-rich and sulfur-poor wheat flour proteins is affected by temperature and mineral nutrition during grain development. Cereal Sci. 44: 101–112
- Forrest KL, Bhave M (2008) The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features. Funct Integr Genomics. 8: 115-133
- Gallie DR, Le H, Caldwell C, Browning KS (1998) Analysis of translation elongation factors from wheat during development and following heat shock. Biochem. Biophys Res Commun. 245: 295–300
- Giornini S, Galili G (1991) Characterization of HSP-70 cognate proteins from wheat. Theor Appl Genet. 82: 615-620

- Giuliodori AM, Brandi A, Gualerzi CO, Pon CL (2004) Preferential translation of cold-shock mRNAs during cold adaptation. RNA 10: 265-276
- Godoy AV, Lazzaro AS, Casalongue CA, Segundo BS (2000) Expression of a Solanum tuberosum cyclophilin gene is regulated by fungal infection and abiotic stress conditions. Plant Sci. 152:123–134
- Golldack D, Dietz KJ (2001) Salt-induced expression of the vacuolar H⁺-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol. 4: 1643–1654
- Gray GR, Heath D (2005) A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolome fingerprinting. Plant Physiol 124: 236–248
- Grover A, Kapoor A, Lakshmi OS, Agarwal S (2001) Understanding molecular alphabets of the plant abiotic stress responses. Plant Mol Biol. 80:206–216
- Guy CL (1999) Molecular responses of plants to cold shock and cold acclimation. J Mol Microbiol Biotechnol. 1: 231–242
- Holappa LD, Simmons MKW (1995) The Wheat Abscisic Acid-Responsive Protein Kinase mRNA, PKABA1, Is Up-Regulated by Dehydration, Cold Temperature, and Osmotic Stress. Plant Physiol 108: 1203–1210
- Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, MacCarthy L, Crosby WL, Sarhan F (2006) Wheat EST resources for functional genomics of abiotic stress. BMC Genomics. 7:149
- Houde M, Danyluk J, Laliberte JF, Rassart E, Dhindsa RS, Sarhan F (1992) Cloning, characterization and expression of a cDNA encoding a 50-kiladalton protein specifically induced by cold acclimation in wheat. Plant Physiol. 99: 1381-1387
- Huang T, Duman JG (2002) Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNAbinding activity from winter bittersweet nightshade, *Solanum dulcamara*. Plant Mol Biol. 48:339-350
- Hurkman WJ, Tanaka CK (2007) Extraction of wheat endosperm proteins for proteome analysis. Chromatography 15:344-350
- Jang CS, Kim DS, Bu SY, Kim JB, Lee SS, Kim JY, Johnson JW, Seo YW (2002) Isolation and characterization of lipid transfer protein (LTP) genes from a wheat-rye translocation line. Plant cell reports. 20:961-966
- Kamal AHM, Kim KH, Shin DH, Seo HS, Shin KH, Park CS, Heo HY, Woo SH (2009) Profile of pre-harvest sprouting wheat by using MALDI-TOF Mass Spectrometry. Plant Omics J. 2:110-119
- Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem. 277: 35248-35256
- Khuri S, Bakker FT, Dunwell JM (2001) Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol Biol Evol. 18: 593-605
- Kobza J, Edwards GE (1987) Influences of Leaf Temperature on Photosynthetic Carbon Metabolism in Wheat. Plant Physiol. 83:69–74
- Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–41

- Kuiper PJC, (1998) Adaptation mechanism of green plants to environmental stress. The role of plant sterols and the phosphatidyl linolenoyl cascade in the functioning of plants and the response of plants to global climate change. pp 209-215 in: Csermely, P. (Ed.), Stress of Life. From Molecules to Man. Annals of the New York Academy of Sciences. New York.
- Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY, Zhou RG (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol. 132: 1186-1195
- Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer *Arabidopsis* aluminum tolerance. Plant J. 57: 389–399
- Liu JP, Zhu JK (1997) An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc Natl Acad Sci USA. 94: 14960– 14964
- Ma X, Qian Q, Zhu D (2005) Expression of a calcineurin gene improves salt stress tolerance in transgenic rice. Plant Mol Biol. 58: 483-495
- Majoul T, Bancel E, Triboi E, Hamida JB, Branlard G (2004) Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heatresponsive proteins from non-prolamins fraction. Proteomics. 4: 505–513
- Martinez CA, Loureiro ME, Oliva MA, Moacyr Maestri M (2001) Differential responses of superoxide dismutase in freezing resistant *Solanum curtilobum* and freezing sensitive *Solanum tuberosum* subjected to oxidative and water stress. Plant Sci. 160:505–515
- O'Farrell PH (1975) High resolution twodimensional electrophoresis of proteins. J Biol Chem. 250: 4007-4021
- Osborne TB (1924) The Vegetable Proteins. London: Longmans Green 1-151
- Qin D, Wu H, Peng H, Yao Y, Ni1 Z, Li Z, Zhou C, Sun Q (2008) Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (*Triticum aestivum* L.) by using Wheat Genome Array. BMC Genomics. 9:432
- Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in *Zea mays* L. Plant J. 50:54-69
- Qureshi M I, Qadir S, Zolla L (2007) Proteomics-based dissection of stress-responsive in plants. Plant Physiol. 164: 1239–60
- Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 130: 1143-1151
- Sagi M, Savidov NA, L'vov NP, Lips SH (1997) Nitrate reductase and molybdenum cofactor as affected by salinity and nitrogen source. Plant Physiol. 99: 546– 553
- Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-Type Zinc-Finger Proteins Function as Transcription Repressors under Drought, cold, and High-Salinity Stress Conditions. Plant Physiol. 136: 2734–2746
- Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics. 2: 1131–1145

- Schuppler U, He PH, John PCL, Munns R (1998) Effect of Water Stress on Cell Division and Cell-Division-Cycle 2-Like Cell-Cycle Kinase Activity in Wheat Leaves. Plant Physiol. 117: 667–678
- Segal G, Feldman M (1996) Tubb1, a beta-tubulin cDNA from common wheat. EMBL/GenBank/DDBJ databases
- Sha Valli Khan PS, Hoffmann L, Renaut J, Hausman JF (2007) Current initiatives in proteomics for the analysis of plant salt tolerance, Current Science. 93: 6-11
- Shan L, LI C, Chen F, Zhao S, Xia G (2008) A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell Envir. 31: 1128 – 1137
- Treglia A, Spano G, Rampino P, Giangrande E, Nocco G, Mita G, Di Fonzo N, Peppotta C (1999) Identification by in vitro translation and Northern blot analysis of heat shock mRNAs isolated from wheat seeds exposed to different temperatures during ripening. Cereal Sci. 30: 33–38
- Wallwork MAB, Logue SJ, MacLeod LC, Jenner CF (1998) Effect of high temperature during grain filling on starch synthesis in the developing barley grain. Aust J Plant Physiol. 25: 173–181
- Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244– 52
- Woo SH, Fukuda M, Islam N, Takaoka M, Kawasaki H, Hirano H (2002) Efficient peptide mapping and its application to identification of embryo proteins in the rice proteome analysis. Electrophoresis 23: 647-654

- Xu S, Wang X, Chen J (2006) Zinc finger protein 1 (ThZF1) from salt cress (*Thellungiella halophila*) is a Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Rep. 26: 497-506
- Yahata E, Funatsuki WM, Nishio Z, Tabiki T, Takata K, Yamamoto Y, Tanida M, Saruyama H (2005) Wheat cultivar-specific proteins in grain revealed by 2-DE and their application to cultivar identification of flour. Proteomics. 5: 3942–3953
- Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA. 100: 6263-6268
- Yang J, Sears RG, Gill BS, Paulsen GM (2002) Genotypic differences in utilization of assimilate sources during maturation of wheat under chronic heat and heat shock stresses. Euphytica. 125: 179-188
- Zhang H, Lian C, Shen Z (2009) Proteomic identification of small, copper-responsive proteins in germinating embryos of *Oryza sativa*. Ann Bot. 103: 923–930
- Zhang T, Liu Y, Yang T, Zhang L, Xu L, An L (2006) Diverse signals converge at MAPK cascades in plants. Plant Physiol Biochem. 44: 274–83
- Zhong H, Lauchli A (1994) Spacial distribution of solutes, K, Na, Ca and their deposition rates in the growth zone of primary cotton roots: Effects of NaCl and CaCl2. Planta. 194: 34–41

Functions	MW	p <i>I</i>	Species	Accession Number	Gene	Cultivar Specific SC (%)				
					Name	Ca	Cb	J ^a	J ^b	
17.6 kDa class I heat shock protein H	17590	5.36	Arabidopsis thaliana	HSP12_ARATH	HSP17. 6	-	17	22	-	
17.8 kDa class II heat shock protein H	17786	5.33	Zea mays	HSP22_MAIZE	-	-	-	11	24	
18.2 kDa class I heat shock protein H	18123	6.77	Arabidopsis thaliana	HSP13_ARATH	HSP18. 2	-	20	13	-	
1-Cys peroxiredoxin ^{8,D}	23875	6.30	<i>Triticum turgidum</i> subsp. durum	gi 12247762	PER1	-	35	21	-	
200 kDa cold-induced protein ^C	2721	6.75	Triticum aestivum	Q9S8M5_WHEAT	-	-	-	-	36	
23.5kDa heat-shock protein ^H	23443	4.89	Triticum monococcum	gi 147225062	-	-	-	-	21	
2-Cys peroxiredoxin BAS1, chloroplastic ^S	23314	5.71	Triticum aestivum	BAS1_WHEAT	TSA	-	-	25	22	
ABA response element binding factor ^C	41700	5.83	Triticum aestivum	Q8LK78_WHEAT	ABFB	7		37	19	
ABA-inducible protein WRAB1 D,S,C	18267	8.63	Triticum aestivum	gi 4929080	Wrab19	-	25	64	36	
Abscisic acid insensitive protein 3 ^{D,S,C}	27534	4.10	Arabidopsis thaliana	gi 149207533	ABI3	-	9	-	17	
Alpha-tubulin ^H	5581	5.55	<i>Triticum turgidum</i> subsp. durum	gi 82174009	atu3	-	21	-	49	
Aluminum-activated malate transporter	49460	6.64	Secale cereale	gi 77166842	-	-	-	-	13	
Annexin D4 ^H	36198	6.88	Arabidopsis thaliana	ANXD4_ARATH	ANN4	-	-	18	-	
Aquaporin ^{D,S,C}	21140	9.14	Triticum aestivum	gi 161897630	PIP1-8	-	-	17	11	
Ascorbate peroxidase ^H	15360	4.70	Triticum aestivum	Q8LLM6_WHEAT	-	-	-	44	-	
Beta-amylase 1 ^H	9615	6.10	Triticum monococcum	gi 148529650	BAMY1	-	-	21	14	
Biostress-resistance-related protein ^O	33992	8.93	Triticum aestivum	Q84VJ1_WHEAT	-	-	-	28	-	
Blue copper-binding protein-like $^{\rm O}$	19196	8.77	Oryza sativa	Q7F1H3_ORYSA	-	-	-	27	-	
Bowman-Birk type proteinase inhibitor II-4 ^{D,S}	5941	8.45	Triticum aestivum	IBB2_WHEAT	-	26	42	56	23	
Cadmium-induced protein AS8 ⁰	18290	9.30	Arabidopsis thaliana	CDI8_ARATH	At4g190 70	-	-	29	31	
Calcineurin B-like protein 10 ^{H,S}	29895	4.88	Oryza sativa subsp. japonica	CNBLA_ORYSJ	CBL10	-	-	28	10	

Supplementary Table 1. List of identified abiotic stress-responsive proteins in four wheat cultivars including name of gene

Calcium-dependent protein kinase D,S,C	59722	6.20	Triticum aestivum	gi 164472660	CPK1C	18	-	39	27
Calmodulin ^H	16838	4.10	Triticum aestivum	CALM_WHEAT	-	-	-	35	10 0
Calnexin homolog 2 ^H	60451	4.74	Arabidopsis thaliana	CALX2_ARATH	At5g073 40	-	-	11	-
Casein kinase I ^S	53569	9.86	Arabidopsis thaliana	Q9FFH8_ARATH	-	-	-	12	19
Catalase I ^H	56440	6.58	Triticum aestivum	CATA2_WHEAT	CATA	-	-	5	-
CBFIVd-D9 ^C	28770	8.76	Triticum aestivum	gi 117653943	-	-	-	12	-
Chaperone protein dnaJ 13 ^{D,H}	59191	8.89	Arabidopsis thaliana	DNJ13_ARATH	ATJ13	-	-	16	36
Cold shock domain protein 3 $^{\rm C}$	21520	5.73	Triticum aestivum	Q75QN8_WHEAT	WCSP3	-	24	-	22
Cold shock protein-1 ^C	21334	5.74	Triticum aestivum	gi 21322752	WCSP1	-	-	6	16
Cold-regulated protein ^C	16812	9.93	Brassica rapa subsp. chinensis	gi 82659775	ICE1	42	-	36	22
Copper transporter-like protein COPT3	14395	9.39	Arabidopsis thaliana	gi 18496854	-	-	-	-	28
Cyclic nucleotide-gated ion channel 1 ^D	17126	4	Arabidopsis thaliana	CNGC1_ARATH	CNGC1	-	-	4	-
Cyclin delta-3 ^D	36883	5.65	Arabidopsis thaliana	Q94JY0_ARATH	-	-	-	17	-
Cyclin dependent protein kinase D	25361	8.84	Triticum aestivum	gi 86438780	cdc2-1A	23	23	-	16
Cyclin-B2-2 ^D	47473	5.69	Oryza sativa subsp. indica	CCB22_ORYSI	CYCB2 -2	-	-	36	24
Cyclophilin ^{D,C}	13584	9.19	Triticum aestivum	gi 82547214	CYP23- d	27	22	77	39
Cytokinin dehydrogenase ^O	1703	8.59	Triticum aestivum	CKX_WHEAT	-	86	80	23	60
Defensin Tm-AMP-D1.2 ^o	5694	8.51	Triticum monococcum	DEF12_TRIMO	-	7	-	37	65
Dehydrin Xero 2 ^D	20897	9.38	Arabidopsis thaliana	XERO2_ARATH	XERO2	-	-	24	44
Delta 1-pyrroline-5-carboxylate synthetase ^{D,S}	77652	6.14	Triticum aestivum	Q58QF6_WHEAT	-	34	18	-	-
DEP1 ⁰	31664	8.29	Triticum aestivum	gi 208293840	-	-	-	13	-
Dof-type zinc finger protein ^{D,S}	3459	11.71	Triticum aestivum	gi 192898656	-	-	-	26	10 0
Drought-induced protein 1 D	9932	9.44	Glycine latifolia	Q6XPS8_9FABA	-	-	-	-	23
Drought-induced S-like ribonuclease D	28380	5.25	Oryza sativa	Q69JX7_ORYSA	P0569E	-	13	21	13

					11.38				
Elongation factor 1-alpha H	49135	9.20	Triticum aestivum	EF1A_WHEAT	TEF1	12	4	-	32
Em protein ^C	9953	5.55	Triticum aestivum	EM1_WHEAT	EM	5	16	19	-
Ethylene receptor-like protein ^O	28536	7.44	Triticum aestivum	gi 29465662	-	-	-	24	28
Eukaryotic initiation factor 4B ^H	14845	5.18	Triticum aestivum	gi 6739520	Eif4B	21	16	42	67
Ferritin 2A ^H	9021	5.47	Triticum aestivum	gi 210061145	-	43	-	23	11
Germin-like protein 1-3 °	23615	8.45	Oryza sativa subsp. japonica	GL13_ORYSJ	GER8	-	-	11	16
Glucose-1-phosphate adenylyltransferase ^H	33236	5.13	Triticum aestivum	S 05078	AGA.1	16	31	8	23
Granule-bound starch synthase GBSSII	66008	6.38	Triticum aestivum	Q9SQ58_WHEAT	-	-	22	14	26
GTP binding protein ^H	23041	6.96	Zea mays	gi 163838698	-	-	41	57	17
Heat shock protein 1 ^H	8401	8.26	Glycine max	HSP12_SOYBN	HSP683 4-A	-	-	39	44
Heat shock protein 16.9 ^H	2263	8.09	Triticum aestivum	Q42417_WHEAT	hsp16.9- 17LC3	76	88	71	71
Heat stress transcription factor C-1b ^H	27209	8.93	Oryza sativa subsp. japonica	HFC1B_ORYSJ	HSFC1 B	-	21	25	29
Initiation factor 2 alpha kinase-like ^H	59704	5.18	Oryza sativa	Q6Z658_ORYSA	-	-	-	8	-
L-ascorbate peroxidase 1, cytosolic ^S	27086	5.31	Oryza sativa subsp. indica	APX1_ORYSI	APX1	-	-	52	-
LEA D-11 dehydrin D,H	12803	7.21	Triticum aestivum	gi 21624242	Wdhn13	-	-	45	21
Lipid transfer protein precursor ^D	9827	8.89	<i>Triticum turgidum</i> subsp. durum	Q9FEK9_TRITU	ltp7.1	7	-	70	18
Low-temperature regulated protein BN26 [°]	14456	6.37	Brassica anpus	JQ2281	-	-	-	-	31
Manganese superoxide dismutase ^O	19302	6.77	Triticum aestivum	gi 125663927	-	-	-	-	14
Metal tolerance protein B ⁰	42316	6.14	Arabidopsis thaliana	MTPB_ARATH	MTPB	-	-	-	22
Metallothionein-like protein 1 ⁰	7378	4.44	Triticum aestivum	MT1_WHEAT	ALI1	54	62	62	24
Mitogen-activated protein kinase kinase 4 ^{C,S}	40091	9.46	Arabidopsis thaliana	M2K4_ARATH	MKK4	-	-	-	18
Molybdenum cofactor synthesis protein $2B^{0}$	20944	5.68	Oryza sativa subsp. japonica	MOC2B_ORYSJ	MOCS2	-	-	10	-
Mutant granule bound starch synthase I $_{\rm H}$	58894	5.60	Triticum aestivum	Q8W2G8_WHEAT	waxy	-	19	-	-

									r
MYB transcription factor TaMYB1 D,S,C	31894	8.93	Triticum aestivum	Q27W75_WHEAT	-	-	-	31	23
NADH dehydrogenase subunit J $^{\rm O}$	14825	6.11	Triticum monococcum	gi 164453470	ndhJ	-	-	10 0	28
Ozone-responsive stress-related protein- like ^O	8780	8.85	Oryza sativa	Q9LWT2_ORYSA	-	1	1	35	-
Plastidic alpha 1,4-glucan phosphorylase	74852	5.41	Triticum aestivum	gi 34485589	-	1	1	-	
Potassium channel AKT2/3 ^S	91253	6.09	Arabidopsis thaliana	AKT2_ARATH	AKT2	-	-	12	6
Probable calcium-binding protein CML30 ^{D,S,C}	22682	4.20	Arabidopsis thaliana	CML30_ARATH	CML30	1	1	-	20
Probable elongation factor 1-gamma 2 ^H	46374	5.55	Arabidopsis thaliana	EF1G2_ARATH	At1g577 20	-	-	13	-
Probable RAS type GTP-binding protein	24346	5.26	Arabidopsis thaliana	G84723	-	-	-	24	-
Probable WRKY transcription factor 24	20791	8.39	Arabidopsis thaliana	WRK24_ARATH	WRKY 24	1	-	32	15
Protein dehydration-induced 19 homolog 5 ^D	24536	4.73	Arabidopsis thaliana	DI195_ARATH	DI19-5	1	-	21	14
Protein kinase ^{D,S,C}	60937	9.14	Triticum aestivum	gi 110341792	wpk4	22	-	26	75
Putative calmodulin-domain protein kinase, 5' partial	27779	4.97	Arabidopsis thaliana	Q9SR20_ARATH	-	-	-	-	11
Putative chaperonin 21 ^D	26308	7.71	Oryza sativa	Q69Y99_ORYSA	-	-	-	8	-
Putative cold shock protein-1 ^C	18689	6.28	Oryza sativa	Q84UR8_ORYSA	-	-	-	55	-
Putative cysteine proteinase inhibitor 9 _{D,C}	12383	5.04	Oryza sativa subsp. japonica	CYT9_ORYSJ	Os03g0 210000	-	-	-	24
Putative ethylene-responsive protein ⁰	18729	5.59	Arabidopsis thaliana	Q8LGG8_ARATH	-	-	-	-	18
Putative germin-like protein 2-2 ^O	23645	6.49	<i>Oryza sativa</i> subsp. japonica	GL22_ORYSJ	Os02g0 491700	1	-	4	-
Putative GTP-binding protein ^H	44308	6.30	Oryza sativa	Q6Z1J6_ORYSA	-	-	-	24	42
Putative heat shock protein 21 ^H	25337	8.48	Arabidopsis thaliana	gi 39104609	-	-	-	22	24
Putative low temperature and salt responsive protein ^{C,S}	7821	5.58	Triticum aestivum	Q8H1Z1_WHEAT	-	28	-	-	-
Putative mitogen activated protein kinase kinase ^{C,S}	80153	5.02	Arabidopsis thaliana	Q9CAV6_ARATH	-	-	-	-	21
Putative protein kinase ^{D,S,C}	22724	9.46	Triticum monococcum	gi 207174006	-	28	37	-	36

Putative RING protein; putative VWA protein ^O	23035	8.16	Triticum aestivum	gi 40644800		-	-	51	-
Putative RNA-binding protein ^S	16287	8.20	<i>Oryza sativa</i> sub sp. japonica	Q6AU49_ORYSA	-	-	-	-	4
Putative rubisco activase ^H	5599	4.65	<i>T. turgidum</i> subsp. durum	gi 62176924	rba1	-	88	-	-
Putative salt-inducible protein ^S	94223	6.72	Oryza sativa	gi 14488297	-	-	-	-	10
Putative stress responsive protein ^S	5627	4.33	Arabidopsis thaliana	Q8GWH0_ARATH	At4g306 60	-	52	-	-
Putative thioredoxin ^H	29754	8.60	<i>Oryza sativa</i> subsp. japonica	Q6Z4N3_ORYSA	-	-	-	-	26
Putative zinc-binding protein ^{D,S}	28239	9.30	<i>Oryza sativa</i> subsp. japonica	Q6Z8A4_ORYSA	-	-	-	-	15
R2R3MYB-domain protein D,S,C	4931	8.79	Zea mays	gi 6165732	-	-	-	-	72
Rac-like GTP-binding protein 4 $^{\rm O}$	24063	9.53	<i>Oryza sativa</i> subsp. japonica	RAC4_ORYSJ	RAC4	-	-	57	23
Ribulose bisphosphate carboxylase large chain ^H	52817	6.22	Triticum aestivum	RBL_WHEAT	rbcL	-	19	-	8
Ribulose bisphosphate carboxylase small chain clone 512 ^H	13045	5.84	Triticum aestivum	RBS3_WHEAT	-	35	47	53	18
RING-H2 finger protein ATL1E $^{\rm O}$	33476	8.26	Arabidopsis thaliana	ATL1E_ARATH	ATL1E	-	-	16	16
S-adenosyl methionine synthetase 1 $^{\rm H}$	42793	5.61	Triticum monococcum	METK1_TRIMO	SAMS1	-	24	35	29
Salt and low temperature response protein ^{S,C}	8139	4.42	Brassica rapa subsp.pekinensis	Q6GYJ6_BRARP	-	-	35	35	35
Salt stress root protein RS1 ^S	21782	4.92	Oryza sativa subsp. indica	SRS1_ORYSI	OsI_001 009	-	33	22	26
Salt tolerant protein ^S	17058	4.71	Triticum aestivum	gi 63021412	SI	23	17	5	24
Senescence-associated protein-related ⁰	29623	5.85	Arabidopsis thaliana	gi 22331260	-	-	-	14	
Serine carboxypeptidase 3 ^H	55296	5.88	Triticum aestivum	CBP3_WHEAT	CBP3	-	16	16	21
Shaggy-like kinase ^S	45573	8.95	Triticum aestivum	gi 117646987	-	-	-	31	-
Small GTP-binding protein ^O	22941	6.90	Triticum aestivum	gi 57547575	-	-	-	49	1
Small heat shock protein, chloroplastic ^H	26579	9.64	Triticum aestivum	HS21C_WHEAT	HSP21	8	17	18	-
Stress-induced protein KIN2 ^C	6547	9.11	Arabidopsis thaliana	KIN2_ARATH	KIN2	-	50	-	-
Stress-responsive protein, putative ⁰	21573	8.86	Oryza sativa	Q8LN75_ORYSA	OSJNB b01N21.	-	53	-	-

					27				
Thioredoxin H-type ^H	13515	5.12	Triticum aestivum	TRXH_WHEAT	-	40	40	34	45
Thylakoid-bound ascorbate peroxidase ^O	41305	5.48	Triticum aestivum	Q8GZC1_WHEAT	-	23	-	-	-
Translation initiation factor IF-1, chloroplastic ^C	13104	9.45	Triticum aestivum	IF1C_WHEAT	infA	-	-	38	67
Triticin ^D	23536	6.48	Triticum aestivum	gi 171027863	-	10 0	95	-	13
Truncated cold acclimation protein COR413-TM1 ^C	18722	11.8	Zea mays	Q84LB3_MAIZE	-	-	-	16	-
Tubulin beta-1 chain ^H	50254	4.73	Oryza sativa subsp. japonica	TBB1_ORYSJ	TUBB1	-	-	14	31
Ubiquitin ^D	8520	6.56	Triticum aestivum	UBIQ_WHEAT	-	23	16	48	48
Universal stress protein / early nodulin ENOD18-like ^O	17867	8.74	Oryza sativa	Q6ZHE6_ORYSA	-	-	-	25	47
Wall-associated kinase 4 $^{\rm O}$	57611	6.61	Triticum aestivum	Q4U3Z7_WHEAT	WAK4	8	-	11	24
WRKY family transcription factor D	39741	6.03	Arabidopsis thaliana	gi 18417879	-	-	-	24	22
Zinc finger A20 and AN1 domain- containing stress-associated protein ^D	18898	8.44	Arabidopsis thaliana	SAP9_ARATH	SAP9	-	42	44	27

Criteria: MW: Molecular weight; pI: Iso-electric Point; C^a: China-108; C^b: Yeonnon-78; J^a: Norin-61; J^b: Kantou-107; D: Drought stress; H: Heat stress; S: Salt stress; C: Cold stress; O: Other abiotic stress responses, SC: Sequence Coverage